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Abstract. Nowadays, there has been a meaningful increase in the use
of frequent approximate subgraph (FAS) mining for different applica-
tions, for example, graph classification. However, the great amount of
mined patterns is one of the fundamental drawbacks of FAS mining.
This drawback has a negative effect in the computational performance
of classifiers, especially in large graph databases where the number of fre-
quent patterns could be very high. In this paper, we propose a research
proposal driven to obtain FAS mining algorithms capable to compute a
representative subset of patterns. The representative pattern set should
be identified into the mining process improving the efficiency in time,
in comparison with the time required if this identification is performed
in a post-processing stage over all patterns computed by a general FAS
mining algorithm.

Key words:Approximate graph mining, representative patterns, graph-based
classification.

1 Introduction

In data mining, frequent pattern identification has become a meaningful topic
with a wide set of applications in several domains of the science [1]. This topic
includes different techniques for pattern extraction, where frequent subgraph
mining techniques have been highlighted. Using graphs as basic structure allows
identifying patterns with spatial and semantic relationships.
Several algorithms have been developed for finding all frequent subgraphs in
a graph database [2–6]. Most of these algorithms use exact matching methods
for computing the frequent subgraphs, but there are several practical problems
where the need to allow some variations in the data arises. This fact is because
there are concrete problems where exact matching could not be applied with
positive outcome [7, 8]. This means that it is important tolerating certain level
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of distortion, semantic variations, vertices or edges mismatched during the fre-
quent pattern search. Thus, it is required to evaluate the similarity between
graphs considering approximate matching. In this way, several algorithms have
been developed for frequent approximate subgraph (FAS ) mining, which use
different approximate graph matching techniques allowing the detection of fre-
quent subgraphs with some distortions in the data [7–11]. These FAS mining
algorithms have been successfully used for supervised classification, where FASs
are used as features for representing objects. This approach has been used in
several domains of the science as: analysis of biochemical structures [9, 11], anal-
ysis of genetic networks [10], analysis of circuits, links and social networks [8],
and image classification [7]. However, in most of these applications, usually a
large number of frequent subgraphs is computed [12], therefore, discovering in-
teresting patterns in this set of patterns is still a challenge. Several techniques
have been proposed for identifying interesting subgraphs, reducing the dimen-
sionality of the identified pattern set, such as: identifying only maximal, cliques,
and closed subgraphs, among others. Using only maximal frequent subgraphs in-
stead of using all the patterns is one of the techniques used to avoid redundancy
among the computed patterns and consequently for reducing the dimensionality
of this set of patterns. A maximal frequent subgraph is a pattern that is not a
subgraph of any other frequent subgraph [13]. It is important to highlight that
from the frequent maximal subgraphs it is possible to reconstruct the whole set
of frequent subgraphs because all of them are summarized into the maximal pat-
terns. However, from the maximal patterns, the information about the support
of non-maximal patterns cannot be retrieved. To face this problem, in several
applications closed frequent subgraph are used. A closed frequent subgraph is
a pattern that does not have any supergraph with the same frequency [14, 15].
Thus, from the closed frequent subgraphs it is possible to reconstruct the whole
set of frequent subgraphs including the information about their support. In real
applications such as biochemical compounds, clique frequent subgraphs [9, 16]
have been used for reducing the amount of mined patterns. A frequent clique
subgraph is a pattern where every two vertices are connected by an edge. Using
this kind of patterns, specially when the graph collection contains many clique
graphs, the amount of patterns is too high.
This paper is structured as follows: in Section 2, some related works about al-
gorithms for computing representative patterns are described. In Section 3, the
research problem is presented. In Section 4, the research proposal is discussed.
This proposal includes: the research question, the aims, and the expected contri-
butions of this research. Later, in Section 5 we present some preliminary results.
Finally, our conclusions are included in Section 6.

2 Related work

Several researchers have turned their attention to the problem of mining maxi-
mal, closed or clique patterns in graph collections [9, 14–17]; however, only a few
of these works are based on approximate graph matching:
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– APGM [9] computes the frequent approximate subgraphs that are cliques in
a graph collection. This algorithm uses a depth-first search (DFS) approach
for building each clique candidate pattern by extending the edges and using
the Canonical Adjacency Matrix code (CAM code) of each candidate, sub-
isomorphism tests are applied. Also, in this process, a substitution matrix,
containing probabilities of interchange between vertex labels, is used. Al-
though the authors suggested that this idea can be extended to edge labels,
this algorithm only deals with variations between vertex labels.

– Z. Zou et al. [16] propose an algorithm that computes top-k maximal clique
subgraphs in an uncertain graph. In this approach, a combination of both,
maximal and clique, are used for taking advantage from both approaches.
This algorithm uses an exact approach for computing sub-isomorphism be-
tween graphs, but during the candidate generation process, each candidate
is identified as a clique evaluating the probability that the candidate has
of being a clique across all processed graphs. Each graph, processed by this
algorithm, is uncertain because it is built taking into account the existence
probability over the original graph.

In this paper, we are focused on the approximate approach for graph mining,
which allows some semantic variations in vertex and edge labels keeping the
graph topology.

3 Research problem

Frequent approximate subgraph mining have become a very commonly used
technique in data knowledge extraction, which has been successfully applied in
several domains of the science. This technique has become an important topic in
those mining tasks where the mined patterns are detected taking into account
distortions in the data. Using these approximate techniques, better results than
the exact techniques are reported in some tasks of graph classification, however,
it has a main problem that a high number of patterns are identified during
the mining process. This high amount of patterns increases the computational
resources needed for storing them, affecting the efficiency and efficacy of the
methods where they will be used.

4 Proposal

In this section, a research proposal to give a solution to the previously commented
problem is presented.

4.1 Research question

Is it possible to propose new algorithms for computing representative frequent
approximate subgraphs, that allow keeping or improving the classification effi-
cacy reported in the state-of-the-art when this type of subgraphs are used as
attributes in supervised problems?
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4.2 Aims

The general aim of this research is:

To propose new algorithms for mining representative FAS that allow us keep-
ing or improving the classification efficacy, in supervised problems, reported in
the state-of-the-art when this type of subgraphs are used as attributes.

The specific aims are:

1. Propose a new algorithm for computing maximal FASs in graph collections.
2. Propose a new algorithm for computing closed FASs in graph collections.
3. Propose a new algorithm for computing clique FASs in graph collections.
4. Extend a based-graph classification framework for evaluating the efficacy

and efficiency of the representative subgraphs computed by our algorithms.

4.3 Expected contributions

The expected contributions of this proposal are:

1. A review of algorithms for frequent subgraph mining in graph collections.
2. An algorithm for computing the maximal FASs in a graph collection.
3. An algorithm for computing the closed FASs in a graph collection.
4. An algorithm for computing the clique FASs in a graph collection.
5. A graph classification framework based on FAS mining using the proposed

algorithms.

5 Preliminary results

As preliminary results of the proposed research, we propose an algorithm for
computing maximal frequent approximate subgraphs (M-FASs) based on an
algorithm for FASM proposed by Acosta-Mendoza et al. [7] (VEAM), where
substitution matrices are used to specify which vertices, edges or labels can
replace some other ones; allowing variation into the vertex and edge labels, but
keeping the graph topology.

Our proposal, which is a modification of the VEAM algorithm, called M-
VEAM, extracts only the maximal FASs from a graph collection. M-VEAM (see
Algorithm 1) starts finding the frequent approximate single-edge set C, using a
breadth-first search (BFS ). Later, for each pattern in C, a function “Search” (see
Algorithm 2) that recursively computes all extensions of a given pattern using
depth-first search (DFS ), is invoked and if the extended pattern is maximal (i.e.
none of its extensions is frequent) then it is stored into the output set F . The
function “appLset” (see Algorithm 3) searches the possible approximate label set
for the new edge e which is an extension of a pattern T and the possible label set
of the new vertex that e connects with an existing vertex in T (if is necessary).
Finally, when all FASs in C have been extended, the set F of all M-FASs in the
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Algorithm 1: M-VEAM

Input: D : A graph collection
MV : Substitution matrix indexed by LV
ME : Substitution matrix indexed by LE
τ : Similarity threshold
δ : Support threshold.

Output: F : Maximal frequent approximate subgraph set.

F ← ∅;1

C ←the frequent approximate single-edge set in D;2

foreach T ∈ C do3

Search(T,D,MV,ME, τ, δ, F);4

if T is maximal then5

Insert T in F ;6

Algorithm 2: Search

Input: T = (Vt, Et, It, Jt) : A frequent approximate subgraph
D : Graph collection
MV : Substitution matrix indexed by LV
ME : Substitution matrix indexed by LE
τ : Similarity threshold
δ : Support threshold
F : Frequent approximate subgraph set.

Output: F : Maximal frequent approximate subgraph set.

foreach oj ∈ O(T,Gi), where Gi ∈ D do1

foreach e = ExtSet(oj) do2

CL← appLSet(T,MV,ME,Gi, oj , e, τ);3

foreach (elabel, vlabel) ∈ CL do4

The candidate X is built using the tuple (elabel, vlabel);5

C ← C ∪ {(X, codeCAM(X), score)};6

foreach T1 ∈ C do7

if supG(T1, D) ≥ δ and T1 /∈ F then8

Search(T1, D,MV,ME, τ, δ, F);9

if T1 is maximal then10

Insert T1 in F ;11

given collection is returned. More details about VEAM algorithm can be found
in [7, 18].

In order to show the usefulness of using M-FASs for image (graph) classifica-
tion, a comparison between the use, as attributes, of all patterns computed by
VEAM [7] against the M-FASs computed by M-VEAM for image classification,
is shown. Using the M-FASs computed by M-VEAM we build attribute vectors
to represent the images of the collection. An image is represented as an attribute
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Algorithm 3: appLSet

Input: T : A candidate graph
MV : Substitution matrix indexed by LV
ME : Substitution matrix indexed by LE
G = (V,E, I, J) : A graph of the collection
G′ : Embedding of T in G
e = {u, v} : An extension of G′

τ : similarity threshold.
Output: CL : A set of candidate 2-tuples (elabel, vlabel).

foreach j ∈ UτE(J(e)) do1

scoreE ← Smax(T,G′) ∗ MEj,J(e)

MEj,j
;2

if e is a forward extension of G′ then3

foreach i ∈ UτV (I(v)) do4

if i is less than or equal to the largest of the vertex labels of T then5

score← scoreE ∗ MV i,I(v)

MV i,i
;6

if score ≥ τ then CL← CL ∪ {(j, i)};7

else if scoreE ≥ τ then CL← CL ∪ {(j, ∅)};8

vector V = (v1, . . . , vn) where the number of columns n is the amount of maxi-
mal patterns computed by M-VEAM. The value of each attribute vi (1 ≤ i ≤ n)
is the maximum similarity between the pattern i and the image. Thus, a ma-
trix where the row number is the number of graphs (images) in the collection is
built, and the element of each row is the attribute vector which represents the
corresponding image.

Two image databases are used in this experiment: GREC [19] that contains
images of electronic and architectonic plane symbols grouped into 22 classes.
This database was split into 572 (52%) images for training and 528 for testing;
and CoenenDB that contains synthetic images, taken from the Random image
generator of Coenen 3, that represents two landscape views; CoenenDB was
split into 1200 (60%) images for training and 800 for testing. In both databases,
each image is represented as a graph: in GREC, several critical points were
selected and used as vertices to build a graph and the edges contain vertex
spacial information. For CoenenDB, a tree for each image using a quad-tree
method [20] was created and the information of the leaves of these trees was
used to build a graph.

In Table 1, the number of patterns used as attributes for classification are
compared. These patterns are obtained using τ = 40% in the CoenenDB database
and τ = 8% in the GREC database. These values were computed as the mean
of the similarities among the graphs of the collection. This table is split into
two sub-tables, one for CoenenDB and for GREC collections, respectively. The
first column of each sub-table shows the support value used, and the other two

3 www.csc.liv.ac.uk/∼frans/KDD/Software/ImageGenerator/imageGenerator.html
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consecutive columns show the number of patterns (computed by M-VEAM and
VEAM algorithms respectively) used as attributes for classification, and the
third column shows the reduction percentage achieved using only maximal pat-
terns.

Table 1. Number of patterns used as attributes in the classification process.

CoenenDB GREC
support (δ) M-VEAM VEAM Reduction support (δ) M-VEAM VEAM Reduction

20% 437 745 41.34% 2% 1190 1422 16.32%
25% 186 330 43.64% 3% 607 715 15.10%
30% 86 143 39.86% 4% 366 437 16.25%

As we can see in Table 1, using the subgraphs computed by M-VEAM pro-
duces a reduction in the amount of subgraphs used as attributes for classification,
compared against the patterns computed by VEAM. In this table, we can see a
reduction ranging from 15% to 43%.

The next experiment evaluates the classification results reached using the
maximal FASs computed by M-VEAM compared against the results obtained
using all FASs as attributes for classification. We summarize the classification
results of our experiments in Table 2, which is subdivided in two sub-tables: one
shows the accuracy results and the other shows the F-measure results, in the
same order. The first and second columns of these sub-tables show the collection
name and the support threshold values used in this experiment, respectively.
The other four consecutive columns show the classification results (accuracy or
F-measure), for the classifier specified in the top of these columns, using only the
M-FASs computed by M-VEAM and all FAS computed by VEAM, respectively.
Notice that the best results appear boldfaced.

As we can see in Table 2, the results achieved with our proposal are competi-
tive regarding to the results obtained using all patterns computed by VEAM. In
the CoenenDB database, the best classification result was obtained by VEAM
using the J48graft classifier with an accuracy of 97.25, and using the Regres-
sion classifier, M-VEAM obtained the same value. According to the F-measure,
M-VEAM obtained the best result using the Regression classifier with an F-
measure of 97.26. In this database, using the patterns computed by M-VEAM
as attributes, a reduction of 43% was achieved. In the GREC database, the best
classification result was obtained using the patterns computed by VEAM jointly
with the SVM classifier, obtaining an accuracy of 94.51, while using the patterns
computed by M-VEAM we got an accuracy of 93.61 also with the SVM classi-
fier. In this database, the patterns computed by M-VEAM allow a dimensionality
reduction of 16% regarding the number of patterns computed by VEAM.

In addition, in Table 3, we present a statistical comparison for all pairwise
comparisons between our proposal using M-FASs as attributes and the option of
using all patterns computed by VEAM. For this comparison, we use a significant
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Table 2. Classification results (%) using several classifiers.

(a) Accuracy results achieved using several δ values
J48graft Decision Table Regression SVM

Collection δ M-VEAM VEAM M-VEAM VEAM M-VEAM VEAM M-VEAM VEAM
20% 96.38 97.25 95.38 94.38 97.25 96.25 95.50 95.38

CoenenDB 25% 95.50 96.75 94.00 80.13 96.25 96.38 93.63 94.38
30% 95.50 96.50 95.63 95.25 96.38 96.50 95.50 95.13

Average 95.79 96.83 95.00 89.92 96.63 96.38 94.88 94.96

2% 53.98 45.45 57.77 33.90 75.57 73.48 93.61 94.13
GREC 3% 77.52 82.20 63.64 65.72 77.65 83.14 93.37 94.51

4% 77.14 81.63 59.33 68.37 81.11 82.95 92.86 94.13
Average 69.55 69.76 60.25 56.00 78.11 79.86 93.28 94.26

(b) F-measure results achieved using several δ values
J48graft Decision Table Regression SVM

Collection δ M-VEAM VEAM M-VEAM VEAM M-VEAM VEAM M-VEAM VEAM
20% 96.34 97.23 95.43 94.49 97.26 96.21 95.51 95.39

CoenenDB 25% 95.47 96.73 93.94 82.51 96.22 96.33 93.57 94.35
30% 95.43 96.46 95.76 95.33 96.35 96.50 95.47 95.06

Average 95.75 96.81 95.04 90.78 96.61 96.35 94.85 94.93

2% 52.00 38.00 16.90 11.76 55.32 79.17 91.91 93.33
GREC 3% 81.95 86.96 27.54 28.13 74.70 78.43 93.63 89.36

4% 61.32 78.43 25.69 34.29 74.68 76.00 86.11 86.96
Average 65.09 67.80 23.38 24.73 68.23 77.87 90.55 89.88

statistical test known as Bergmann test [21]. The value for α used on this test
was 0.05.

Table 3. Statistical significance results achieved for different classifiers in two image
(graph) collections.

CoenenDB GREC
Test/Classifier M-VEAM vs. VEAM M-VEAM vs. VEAM

J48graft VEAM –
Decision-Table M-VEAM –

Regression – –
SVM – –

In table 3, the first column of these sub-tables shows the classifiers used in
each comparison and columns 2 and 3 show the results for the CoenenDB and
GREC image databases, respectively. These columns show the approach that is
significant better than the other according to the Bergman test; the symbol “–”
indicates that there is not a statistical significant difference between the results
of both approaches.

As we can see from Table 3, the use of M-FASs as attributes is a good option
since the dimensionality is reduced and we obtain similar classification results
than using all the FASs computed by VEAM.
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6 Conclusions

Frequent approximate subgraph mining is a widely used technique in Data Min-
ing applications where there is some distortion into the data. However, usually
a large number of frequent patterns is computed. Using only representative pat-
terns as attributes instead of using all the patterns is a technique that can
be used to reduce the dimensionality of the object descriptions (representation
space). Therefore, the aim of our research work is to develop new algorithms for
mining representative FAS that allows us improving the classification efficiency
and efficacy when this type of subgraphs are used as attributes.

In this paper, we present, as preliminary results of this research work, a
modification of a FAS mining algorithm of the state-of-the-art, for computing
only maximal FASs in graph collections. The experiments show that using only
maximal patterns as attributes, instead of all patterns computed by VEAM,
allows obtaining similar classification results, while reducing the dimensionality
and removing redundant patterns from the set of patterns used as attributes for
image classification.

As future work, we are going to keep developing this research proposal for
achieving the specific objectives and general goals.
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